
1

DATA MANIPULATION

Jeff Goldsmith, PhD
Department of Biostatistics



2

• Manipulate (aka transform, manage, clean) is the third step in wrangling

Data manipulation

R for Data Science



3

• There are a few things you’re going to do a lot of when you manipulate data:
– Select relevant variables
– Filter out unnecessary observations
– Create new variables, or change existing ones
– Arrange in an easy-to-digest format

Major steps



4

• The dplyr package has specific functions that map to each of these major 
steps
– select relevant variables
– filter out unnecessary observations
– mutate (sorry) new variables, or change existing ones
– arrange in an easy-to-digest format

dplyr



4

• The dplyr package has specific functions that map to each of these major 
steps
– select relevant variables
– filter out unnecessary observations
– mutate (sorry) new variables, or change existing ones
– arrange in an easy-to-digest format

dplyr



5

• The modularity is intentional
– Each function is designed to do one thing, and do it well
– This is true of other functions as well (and there are several others)

• These functions share a structure: the first argument is always a data frame, 
and the returned objects is always a data frame
– tibble comes in, tibble goes out, you can’t explain that …

dplyr



6

• Piping allows you to tie together a sequence actions
– “New” to R (2014)
– Came from the magrittr package; loaded by everything in the tidyverse
– Even Newer!! Added to Base R (2021) and updated (2023)

Pipes



6

• Piping allows you to tie together a sequence actions
– “New” to R (2014)
– Came from the magrittr package; loaded by everything in the tidyverse
– Even Newer!! Added to Base R (2021) and updated (2023)

Pipes



7

• Sequence of actions to start my days
– Wake up
– Brush teeth
– Do data science

• In “R”, I can nest these actions:
happy_jeff = do_ds(brush_teeth(wake_up(asleep_jeff)))

• Alternatively, I could name a bunch of intermediate objects
 awake_jeff = wake_up(asleep_jeff)

clean_teeth_jeff = brush_teeth(awake_jeff)
happy_jeff = do_ds(clean_teeth_jeff)

Pipes



8

• Using pipes is easier to read and understand, and avoids clutter
 happy_jeff = 
        wake_up(asleep_jeff) |>
        brush_teeth() |>
        do_ds()

• Read “|>” as “and then”
• The result of one function gets passed as the first argument to the next one 

by default, although you can be more specific
• Works very well with “tibble goes in, tibble comes out” philosophy

• You will probably never fully appreciate how great piping is
– You should be glad that that’s true 

Pipes



9

Time to code!!


