
�1

WRITING FUNCTIONS

Jeff Goldsmith, PhD 
Department of Biostatistics



�2

When to write functions

“If you use the same code more than twice, write 
a function”

- everyone, basically



�3

• Makes your code easier to read 
• Makes your code easier to change or fix 
• Helps prevent mistakes, especially from copy-and-paste

Why to write functions



�4

• Like in math, a function takes inputs, does something, and returns a result 
• In both, the goal is to abstract some process 
– 4 = 22 is a specific calculation 
– y = x2 is a function 
– sum_x = x[1] + x[2] + x[3] uses a specific computation
– sum_x = sum(x) uses a function

• For computations or operations you define and need to repeat, write a function 
for arbitrary inputs to produce the corresponding outputs

What is a function?



�5

• Every function consists of 
– Arguments (inputs) 
– Body (code that does stuff) 
– Return objects (what the function produces) 

• Each of these can be simple or complex

Parts of a function



�6

• What goes in to your function 
• These get used by the code in the body 
– e.g. x in mean(x) 

• Can take default values, which define a function’s input until a user overwrites 
them 
– e.g. na.rm = FALSE in mean(x) 

• Names matter; use reasonable things 
• Some common names can (and should) be used

– x, y, z for vectors
– df, data for data frames
– n for number of rows / sample size

Arguments



�7

• Do what you want to do with your code 

• A common structure is 
– Data / input checks using conditional execution 
– Perform operations 
– Format output

Body



�8

• Implicit (last value produced) or explicit (using return()) 
• Single value (e.g. a p-value) or a collection (estimate, SE, statistic, p-value) 
• Named (named vector, list, df) or un-named (value, vector)

Return



�9

• Don’t need to understand in huge detail 
• Will help prevent / identify errors 

• Scoping is how R looks for variables 
– The “global environment” is the interactive workspace where you spend the 

vast majority of your time 
– Each time you call a function, a new environment is created to host it’s 

execution 
– If the function use a variable that isn’t defined in that environment, it will go 

looking in the global environment 

• You usually don’t want your functions using stuff in your global environment

Scoping



�10

• Sometimes you only want to do something if a condition is met 
– e.g. produce one output for numeric variables and a different one for factors 

• This kind of execution is called conditional 

• Follows basic logic rules: 
– if (condition_1) { thing_1 }
– else if (condition_2) { thing_2 }
– else { thing_3 }

• Proper formatting helps a lot

Conditional execution



�11

• Start small – with a working example, if possible 
• Write small functions that do one thing well and interact easily 
– Avoid unneeded complexity 

• Clarity is better than cleverness

How to write functions

Adapted from ”Basics of UNIX Philosophy”



�11

• Start small – with a working example, if possible 
• Write small functions that do one thing well and interact easily 
– Avoid unneeded complexity 

• Clarity is better than cleverness

How to write functions

Adapted from ”Basics of UNIX Philosophy”

Attributed to Spotify Dev Team


