
!1

GIT AND GITHUB

Jeff Goldsmith, PhD
Department of Biostatistics

!2

• Yes

Is Git awesome?

!3

• Also yes

Is Git awful?

!4

• The good generally outweighs the bad
– But there is some bad

?????

!5

• Kinda like Google Docs / Dropbox / track changes
• The goal is to avoid this:

So … what is Git?

!6

• Git watches repositories – folders / directories – for changes
• It asks that you describe changes when they’re made
• It remembers old versions if you need them
• It also keeps an eye out for conflicts, and forces you to resolve them
• It allows multiple people to contribute to the same repository, and does all of

the above for everyone at once

That still doesn’t explain it.

!7

• Git lives on your computer; GitHub is a web-based platform for storing
repositories
– Think DropBox, but with Git in your folders (watching you)

• GitHub is a great platform for disseminating work
– You can easily create and host reports; websites; R packages; …

And GitHub?

!7

• Git lives on your computer; GitHub is a web-based platform for storing
repositories
– Think DropBox, but with Git in your folders (watching you)

• GitHub is a great platform for disseminating work
– You can easily create and host reports; websites; R packages; …

And GitHub?

“Excuse me, do you have a moment to talk about version control?”

!8

• Git is something you should be doing, and RStudio tries to make it easy for you
to do

• R Projects can initialize Git with a mouse click
• Then, everything in the project is being watched

What about RStudio

!9

• Git is a command-line tool
• Git clients let you do most Git-related stuff in a GUI
– Git client is to git as RStudio is to R

• RStudio has a bare-bones Git client which will work for most stuff

And a Git client?

!10

• When starting a new analysis / project / whatever, I
– Create GH repo
– Create linked R Project using repo URL
– Do stuff

Workflow

!11

• You do whatever you would usually do
• Once you’ve done some amount of stuff, you commit the changes
– “commit” = “fancy save”
– Git will keep track of changes between commits
– Your commit message will summarize what’s different

• Then you do more stuff, then you commit, then you do more stuff …
• Push changes to GitHub – more on that soon

“Doing stuff” in a git repo

!11

• You do whatever you would usually do
• Once you’ve done some amount of stuff, you commit the changes
– “commit” = “fancy save”
– Git will keep track of changes between commits
– Your commit message will summarize what’s different

• Then you do more stuff, then you commit, then you do more stuff …
• Push changes to GitHub – more on that soon

“Doing stuff” in a git repo

!12

• You can revert to earlier commits if you mess something up
• You can quickly review the development process
• You can see what collaborators are doing, where they’re doing it, and why
• You’re forced to resolve conflicts (two people changing the same thing at the

same time) as they arise

Pros:

!13

• There is a lot of overhead, and it’s worst at the beginning
• “Resolving conflicts” can be awful
• Everyone on a project is required to stick with the same development pipeline

Cons:

!14

• Repository
• Commit
• Push / Pull
• Branch / Merge
• Cloning? Forking??

Vocab

!15

• Messaging
• Issue tracking

Not going to cover

!16

• You have to watch out for data confidentiality – GitHub is public!

Confidentiality

