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• Yes

Is Git awesome?
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• Also yes

Is Git awful?
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• The good generally outweighs the bad 
– But there is some bad

?????
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• Kinda like Google Docs / Dropbox / track changes 
• The goal is to avoid this:

So … what is Git?
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• Git watches repositories – folders / directories – for changes 
• It asks that you describe changes when they’re made 
• It remembers old versions if you need them 
• It also keeps an eye out for conflicts, and forces you to resolve them 
• It allows multiple people to contribute to the same repository, and does all of 

the above for everyone at once

That still doesn’t explain it.
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• Git lives on your computer; GitHub is a web-based platform for storing 
repositories 
– Think DropBox, but with Git in your folders (watching you) 

• GitHub is a great platform for disseminating work 
– You can easily create and host reports; websites; R packages; …

And GitHub?
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“Excuse me, do you have a moment to talk about version control?”  
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• Git is something you should be doing, and RStudio tries to make it easy for you 
to do 

• R Projects can initialize Git with a mouse click 
• Then, everything in the project is being watched

What about RStudio
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• Git is a command-line tool 
• Git clients let you do most Git-related stuff in a GUI 
– Git client is to git as RStudio is to R 

• RStudio has a bare-bones Git client which will work for most stuff

And a Git client?
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• When starting a new analysis / project / whatever, I 
– Create GH repo 
– Create linked R Project using repo URL 
– Do stuff

Workflow
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• You do whatever you would usually do 
• Once you’ve done some amount of stuff, you commit the changes 
– “commit” = “fancy save” 
– Git will keep track of changes between commits 
– Your commit message will summarize what’s different 

• Then you do more stuff, then you commit, then you do more stuff … 
• Push changes to GitHub – more on that soon

“Doing stuff” in a git repo
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• You can revert to earlier commits if you mess something up 
• You can quickly review the development process 
• You can see what collaborators are doing, where they’re doing it, and why 
• You’re forced to resolve conflicts (two people changing the same thing at the 

same time) as they arise

Pros:
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• There is a lot of overhead, and it’s worst at the beginning 
• “Resolving conflicts” can be awful 
• Everyone on a project is required to stick with the same development pipeline

Cons:
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• Repository 
• Commit 
• Push / Pull 
• Branch / Merge 
• Cloning? Forking??

Vocab
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• Messaging 
• Issue tracking

Not going to cover
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• You have to watch out for data confidentiality – GitHub is public!

Confidentiality


