& COLUMBIA | MAILMAN SCHOOL
UNIVERSITY | of PUBLIC HEALTH

>

BIOSTATISTICS |TE R ATl O N AN D
LIST COLUMNS

Jeff Goldsmith, PhD
Department of Biostatistics

& COLUMBIA | MAILMAN SCHOOL
UNIVERSITY | of PUBLIC HEALTH

Why iterate

* You will frequently encounter problems where you need to the same basic
thing a lot

* The “don’t write the same code more than twice” rule motivates the use of
functions

* The need to do the same thing a lot motivates formal structures for iterating

& COLUMBIA | MAILMAN SCHOOL
UNIVERSITY | of PUBLIC HEALTH

for loops

* Loops are the easiest place to start
* Loops consist of an output object; a sequence to iterate over; the loop body;

and (optionally) an input object
 It’s often handy to keep track of inputs and outputs using lists, given their

flexibility

& COLUMBIA | MAILMAN SCHOOL
UNIVERSITY | of PUBLIC HEALTH

for loops

 The basic structure is:

input = list(.)
output = list(..)

for (1 i1n 1:n) {

output[[1]] = fCinput[[1]1D)

& COLUMBIA | MAILMAN SCHOOL
UNIVERSITY | of PUBLIC HEALTH

Loop functions

* The loop process (supply input vector / list; apply a function to each element;
save the result to a vector / list) is really common

* For loops can get a little tedious, and a little opaque
— Have to define output object and iteration sequence
— Need to make sure loop body is indexed correctly
— Often unclear on a first glance exactly how inputs are connected to outputs

* Loop functions are a popular way to clean up loops
— We’'ll focus on purrr: :map()

— Base R has lapply() and similar functions

& COLUMBIA | MAILMAN SCHOOL
UNIVERSITY | of PUBLIC HEALTH

map

» Goal of map is to clarify the loop process

 The basic structure is
output = map(input, f)

* This produces the same result as the for loop, but emphasizes the input and
function and reduces the amount of overhead
— Doesn’t speed code up (as long as you have well-written loops)
— Benefit comes from clarity

& COLUMBIA | MAILMAN SCHOOL
UNIVERSITY | of PUBLIC HEALTH

map variants

* By default, map takes one input and will return a list

 If you know what kind of output your function will produce, you can use a
specific map variant to help prevent errors and simplify outputs:
— map_dbl
— map_1lgl
— map_df

 If you need to iterative over two inputs, you can use map variants to give two

iInput lists / vectors:
— map?2

— map2_dbl

— map2_df

& COLUMBIA | MAILMAN SCHOOL
UNIVERSITY | of PUBLIC HEALTH

Process

| often don’t jump straight to a function definition with a map statement to do
iterative processes

* One workflow | use is
— Write a single example for fixed inputs
— Abstract example to a function
— (Embed function in a loop)
— Re-write using a map statement

* This helps make each step clear, prevents mistakes, and only adds
complexity when | need it
* Eventually you’ll get used to writing functions and mapping directly

MAILMAN SCHOOL
of PUBLIC HEALTH

@& COLUMBIA

UNIVERSITY

Lists

* In R, lists provide a way to store collections of arbitrary size and type
— You can mix character vectors, numeric vectors, matrices, summaries...

> list(a = rnorm(10), b = c("Jeff", "Goldsmith"), c = summary(runif(100)))

$a
[1] -0.455700641 1.07079885 0.23944031 0.61202840 -0.09985825 -0.61119970 ©.11551818 -0.83438686
[9] 1.33986752 0.606033877

$b
[1] "Jeff" "Goldsmith"

$c
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.01796 0.30540 0.47852 0.49379 0.70405 0.98868

MAILMAN SCHOOL
of PUBLIC HEALTH

@& COLUMBIA

UNIVERSITY

Data frames

« Data frames, which we’ve used extensively, are a special kind of list
— Each list entry is a vector with the same length
— You can still mix variable classes
— Printed as a table

> data_frame(

+ a = rnorm(4),

+ b=c("my", "name", "is", "jeff"),

+ ¢ = sample(c(TRUE, FALSE), 4, replace = TRUE)
+)

A tibble: 4 x 3

a b C

<dbl> <chr> <lgl>

1 0.9609689 my TRUE
2 0.9383835 name TRUE
3 -2.8595221 1s FALSE
4 -0.6573009 jeff FALSE

& COLUMBIA | MAILMAN SCHOOL
UNIVERSITY | of PUBLIC HEALTH

List columns

 Lists can contain almost anything
— Alist can even contain a list!

 What if an entry in your list is a list, but it has the same length as the other

entries”?
 Could that be a “column” in a data frame?

11

& COLUMBIA | MAILMAN SCHOOL
UNIVERSITY | of PUBLIC HEALTH

List columns

 Lists can contain almost anything
— Alist can even contain a list!

 What if an entry in your list is a list, but it has the same length as the other

entries”?
 Could that be a “column” in a data frame?

YES!!

11

MAILMAN SCHOOL
of PUBLIC HEALTH

@& COLUMBIA

UNIVERSITY

List columns

 Lists can contain almost anything
— Alist can even contain a list!

 What if an entry in your list is a list, but it has the same length as the other

entries?
 Could that be a “column” in a data frame?

YES!N!

& COLUMBIA | MAILMAN SCHOOL
UNIVERSITY | of PUBLIC HEALTH

Seriously?

 List columns turn out to be very useful

* Imagine you have an input list in a data frame

* You can map a function to each element of that input list, export the output
list, and save it in the same data frame

* Keeping everything in one data frame with list columns means there are fewer
things to worry about

12

& COLUMBIA | MAILMAN SCHOOL
UNIVERSITY | of PUBLIC HEALTH

But wait — there’s more!!

* Imagine you have granular data nested within large units
— Make a list storing your granular data table
— Add the granular data table list to a data frame containing data on larger
units

* Why stop there??
— You can store more complex R objects, like output from regressions on
each granular data table, in a list
— You can add that list to your data frame

* Keeping everything in one data frame with list columns means there are fewer
things to worry about

13

MAILMAN SCHOOL
of PUBLIC HEALTH

@& COLUMBIA

UNIVERSITY

Time to code!!

14

